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Solitary waves in systems with separated Bragg grating and nonlinearity
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The existence and stability of solitons in a dual-core optical waveguide, in which one core has Kerr
nonlinearity while the other one is linear with a Bragg grating written on it, are investigated. The system’s
spectrum for the frequencyv of linear waves always contains a gap. If the group velocityc in the linear core
is zero, it also has two other, upper and lower~in terms ofv) gaps. IfcÞ0, the upper and lower gaps do not
exist in the rigorous sense, as each overlaps with one branch of the continuous spectrum. Whenc50, a family
of zero-velocity soliton solutions, filling all the three gaps, is found analytically. Their stability is tested
numerically, leading to a conclusion that only solitons in an upper section of the upper gap are stable. Forc
Þ0, soliton solutions are sought for numerically. Stationary solutions are only found in the upper gap, in the
form of unusual solitons, which exist as a continuous family in the former upper gap,despiteits overlapping
with one branch of the continuous spectrum. A region in the parameter plane (c,v) is identified where these
solitons are stable; it is again an upper section of the upper gap. Stable moving solitons are found too. A
feasible explanation for the~virtual! existence of these solitons, based on an analytical estimate of their
radiative-decay rate~if the decay takes place!, is presented.

DOI: 10.1103/PhysRevE.64.066617 PACS number~s!: 42.65.Tg, 05.45.Yv, 75.30.Ds
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I. INTRODUCTION

Gap solitary waves~which we will call solitons without
implying integrability! exist in nonlinear dispersive medi
whose spectrum contains one or more forbidden bands
side which linear waves cannot exist, giving room to exp
nentially localized states. An important example of an opti
system with such a spectrum is a fiber equipped with a Br
grating ~BG!. The interplay of Kerr nonlinearity and stron
BG-induced dispersion gives rise to a vast family ofBG
solitons@1#. Comprehensive theoretical studies of these s
tons have laid the ground for their experimental observati
reported in Refs.@2#. Stable gap solitons have also been p
dicted in media combining BG with more sophisticated no
linearities, such as quadratic@3# or that provided by narrow
layers of resonantly absorbing two-level atoms, whose sp
ing is equal to the BG period@4#. More recently, it has been
shown @5–7# that families of BG solitons can be made e
sentially more diverse in dual-core fibers. In particular, du
core systems can be madesemilinear@7# so that only one
core is nonlinear, which gives rise to specific soliton dyna
ics @6,7#.

In the systems considered so far, including the semilin
ones, nonlinearity and BG were presented in the same c
The objective of this work is to introduce and analyze
semilinear system where the nonlinearity and BG are ph
cally separated, being placed in different cores. Althoug
may seem that a difference from the previously conside
models amounts to technical details, we will demonstr
that, in fact, the spectrum of this system for the frequencyv
of linear waves is drastically different from spectra of earl
considered models: it contains a central~in terms ofv) true
gap, and two additional, lower and upper~mutually symmet-
ric!, ones. These are genuine gaps in the case when the g
velocity c in the linear core is zero; otherwise, the upper a
lower gaps each overlaps with one branch of the continu
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spectrum. Generally speaking, gaps overlapping with
continuous spectrum are no longer gaps at all. Neverthe
we will demonstrate that the~former! upper gap is a spectra
band that contains a family of solitons~a part of which is
stable! despitethe overlapping with the continuous spectrum

In the special casec50, a family of exact soliton solu-
tions filling all the three gaps is found in an analytical form
Numerical simulations demonstrate that, in this case, o
the solitons in an upper section of the upper gap are sta
For cÞ0, solitons are sought for by means of numeric
methods, as no analytical solution is available in this ca
As a result,no stationary solutions have been found in t
genuine central gap~where they might be expected!, nor in
the lower gap, which gets immersed into the continuo
spectrum. On the other hand, stationary solitons are foun
the upper gap,~which is also immersed into the continuou
spectrum ifcÞ0). They form~up to the accuracy of numeri
cal computations! a continuous family inside the gap, and
a gap’s upper section, they are found to be true stable s
tons in any practical sense. This seemingly new type of s
tons should be distinguished from recently identifiedembed-
ded solitons, which also exist inside the linear spectrum, b
they are isolated~discrete! semi-stable solutions that neve
form continuous families@8#.

II. THE MODEL AND ITS LINEAR SPECTRUM

Following Ref.@7#, it is straightforward to derive a mode
describing two linearly coupled cores, one with the Ke
nonlinearity and the other one equipped with BG,

iut1 iux1@ uvu21~1/2!uuu2#u1f50, ~1!

iv t2 ivx1@ uuu21~1/2!uvu2#v1c50, ~2!

if t1 icfx1u1lc50, ~3!

ic t2 iccx1v1lf50. ~4!
©2001 The American Physical Society17-1
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Here, u and v are the forward- and backward-propagati
waves in the nonlinear core,f andc are their counterparts
in the linear core, the coefficient of the linear coupling b
tween the cores is normalized to be 1, andl is the coeffi-
cient of linear coupling between the left- and righ
propagating waves induced by BG in the linear core; it
always possible to setl.0. The group velocity in the non
linear core is set equal to 1, andc is the group velocity in the
linear core, measured in the same units. The two group
locities may be different, as the two cores can be made
different materials. As usual, the model neglects intrinsic d
persion ~second-derivative terms! in both cores, since the
effective dispersion induced by BG is much stronger@1# ~it is
easy to check that this remains true even in the case w
BG is written on a single core of a dual-core system!.

First, we consider the system’s linear spectrum. Look
for a solution to the linearized equations in the for
u,v,f,c;exp(ikx2ivt), we arrive at a dispersion relation

v42@~11c2!k21~21l2!#v21~ck221!21l2k250.
~5!

In the limiting casec50, Eq. ~5! yields three disjoint gaps
If l.1/A2, they are

l,v,A11l2/41l/2; ~6!

2~A11l2/42l/2! ,v,A11l2/42l/2; ~7!

2~A11l2/41l/2!,v,2l, ~8!

and, if l,1/A2, the gaps are

A11l2/42l/2,v,A11l2/41l/2; ~9!

2l,v,l; ~10!

2~A11l2/41l/2!,v,2~A11l2/42l/2!. ~11!

Note that the gaps are symmetric with respect to the cha
of the sign ofv. In the particular casel51/A2, all the three
gaps merge into a single one,2A2,v,A2.

The character of the gaps becomes drastically differen
cÞ0. Indeed, in the casec50 andl.1/A2 it is easy to see
that Eq.~5! gives rise to two mutually symmetric branch
v(k) that start at the upper and lower edges of the cen
gap at k50, and, monotonically varying, in the limituku
→` they asymptotically approach constant values, wh
exactly coincide, respectively, with the lower edge of t
upper gap and the upper edge of the lower gap@the dashed
curves in the central part of Fig. 1~a!#. In the casec50 and
l,1/A2, the curves start atk50 at the lower and uppe
edges of the upper and lower gaps, respectively, and asy
totically approach the upper and lower edges of the cen
gap atuku→` @the dashed curves in the central part of F
1~b!#. In either case,v2(uku5`)5l2. However, as it follows
from Eq. ~5!, at any cÞ0 the asymptotic form of thes
branches atuku→` is totally different,

v2'min$c2,1%k2. ~12!
06661
-

s

e-
of
-

en

g

ge

if

al

h

p-
al
.

Typical examples of the spectrum in the case of smallc are
displayed in Fig. 1. Evidently, the change of the shape
these dispersion curves gives rise to overlap of both the
per and lower gap with one~inner, in terms of Fig. 1! branch
of the continuous spectrum, while the outer dispersion cur
remain outside the gaps. As is suggested by what is kno
about the aforementioned embedded solitons@8#, a gap
which is overlapped with one branch, but continues to ex
as a gap relative to another branch of the dispersion relat
may still be capable to support solitons of a special ty
which will be seen below.

III. SOLITONS IN THE CASE cÄ0

In the casec50, stationary soliton solutions to Eqs.~1!–
~4! are sought for as

u5hU~x!exp~2 ivt !, v5hV~x!exp~2 ivt !, ~13!

f5hF~x!exp~2 ivt !, c5hC~x!exp~2 ivt !, ~14!

where the functionsU,V, and F, C are complex, and an
extra constanth is introduced for convenience, see belo
Substituting these expressions into Eqs.~1!–~4!, it is possible

FIG. 1. Typical examples of the linear spectrum generated
the linearized equations~1!–~4!: ~a! l51, c50.1; ~b! l51/2,
c50.1. Dashed curves show the spectrum in the same systems
c50.
7-2
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SOLITARY WAVES IN SYSTEMS WITH SEPARATED . . . PHYSICAL REVIEW E64 066617
to find exact solutions, following the pattern of the we
known generalizedThirring solitons in the single-core non-
linear fiber equipped with a BG@11#,

U ~x!5A2/3~sinu! sech~h2x sinu2 iu/2!,

V~x!52A2/3~sinu! sech~h2x sinu1 iu/2!, ~15!

F52
v

v22l2
U1

l

v22l2
V,

C5
l

v22l2
U2

v

v22l2
V, ~16!

where h5Al/(v22l2), u is a real parameter that take
values 0,u,p, and the frequencyv is to be found from a
cubic equation

~v/l!~v22l221!5cosu. ~17!

This equation yields three roots forv at a givenu, one in
each gap~recall that there are three genuine gaps in the c
c50). In particular, it is easy to check that the valuesu
50 and u5p, at which the soliton’s amplitude vanishe
according to Eqs.~15! and~16!, exactly correspond to edge
of the gaps~6!–~8! or ~9!–~11!: u50 yields the upper edge
of the upper gap, lower edge of the central gap, and up
edge of the lower gap, andu5p gives rise to three othe
edge points of the gaps. Note that, although the soliton s
tions ~15!, ~16! completely fill all the three gaps~6!–~8! or
~9!–~11!, the solitons, unlike the gaps in which they exi
have no symmetry relative to the change of the sign ofv.
The same will be true for solitons considered forcÞ0 in the
next section.

Stability of these exact soliton solutions was studied
means of direct simulations, which has yielded the followi
results:all the solitons belonging to the lower and cent
gaps are unstable, while the upper gap contains two sect
the solitons being stable in the upper section and unstab
the lower one. For instance, in the casel51, the unstable
and stable sections inside the upper gap~6! are, respectively,

1,v,vcr'1.525 andvcr,v,~1/2!~A511!'1.618,
~18!

i.e., the stable section occupies'15% of the upper gap.
These results are qualitatively consistent with those

the above-mentioned generalized Thirring solitons in
single-core fiber equipped with BG. In the latter case,
soliton family may be directly parametrized by the fr
quency, which takes values21,v,11. As was first dem-
onstrated by means of variational approximation@9#, and
then by accurate numerical computations of stability eig
values@10#, the generalized Thirring solitons are stable in
interval vcr,v,1, and unstable if21,v,vcr , where a
numerically found valuevcr is '20.02 ~the value ofvcr
predicted by means of the variational approximation in R
@9# is quite close to this!. In that case, the~also upper! stable
part of the single gap existing in the model occupies'50%
of the whole gap. The large difference in the relative size
06661
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the stable section in the model considered in the pres
work and in the above-mentioned generalized Thirri
model shows that, although the models are qualitativ
similar, their actual properties are essentially different.

We have also simulated interactions between two ident
stable solitons, with an initial phase differenceDw between
them. If Dw is zero, the solitons attract each other, and th
collision generates moving solitons withunequalamplitudes
and different velocities, see Fig. 2. This collision-induc
spontaneous symmetry breaking may arise from the fact
a ‘‘lump,’’ which is temporarily formed when the two soli
tons merge, is subject to modulational instability, so th
small random perturbations can strongly distort it. In t
casesDw5p/2 andDw5p, the solitons are found to repe
each other. The symmetry breaking, as a result of the in
action between the solitons, occurs in these cases as wel
it is less conspicuous, especially whenDw5p.

An implication of these results is that stablemovingsoli-
tons also exist in the model. It should be noted that ex
analytical solutions for moving solitons are known in th
generalized Thirring model describing the single-core fib
carrying BG@11#!, and moving solitons have been observ
experimentally in such a fiber@2#.

IV. THE CASE cÅ0

In the general case,cÞ0, no exact analytical solution is
available. Stationary solutions can, however, be sought
numerically by solving equations produced by the subst
tion of the general expressions~13!–~14! into Eqs.~1!–~4!.
This numerical analysis has produced a surprising result
the central gap, which remains a genuine one atcÞ0 ~see
Fig. 1!, no stationary solitons can be found, nor did we fin
any solution in the former lower gap. On the other han
solitons are found in what was the upper gap atc50. As it
was explained above, the lower and upper gaps are
mersed, each into one branch of the continuous spectrum

FIG. 2. Interaction between two identical stable solitons in
case c50, l51, u5p/4 ~corresponding tov51.565 76) and
Dw50. Only theu component is shown.
7-3
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any cÞ0, that is why these solitons are unusual objects
serving detailed investigation.

To test the dynamical stability of these solitons, we sim
lated Eqs.~1!–~4!, using the numerically obtained stationa
solitons as initial conditions. As a result, it was found th
they may be both stable and unstable. An example show
Fig. 3 illustrates a general conclusion following from th
simulations: if a soliton is unstable, it does not complet
decay into radiation. Instead, in all the cases simulated,
unstable soliton sheds off some radiation and rearrange
self into a stable soliton with largerv, larger width, and
smaller amplitude. Thus, the stable solitons, although t
occupy only a small part of the upper gap~see Fig. 4!, appear
to be strongattractors in the present model~in conservative
nonlinear-wave models, attractors may exist due to radia
losses!.

The results of the numerical stability analysis are summ

FIG. 3. Evolution of an unstable soliton withc50.2, v51.5,
l51. Only theu component is shown.

FIG. 4. The stability diagram in the plane (c,v) at l51. Stable
solitons overlapping with the continuous spectrum occupy the
angular region between the vertical axis, dotted curve, which is
border between stable and unstable solitons, and the horizonta
v5(1/2)(A511)'1.618, which is the upper border of the gap
which the solitons exist.
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rized ~for l51) in Fig. 4 in the form of a stability diagram
on the (c,v) plane. The right boundary,c5cmax(v) ~shown
by dots!, separates stable and unstable solitons~we stress that
the solitons of the present type, as stationary solutions
Eqs.~1!–~4!, exist on both sides of the dotted boundary!. The
top horizontal line, which was found to coincide with th
upper edge of the upper gap

v5vup[A11l2/41l/2 ~19!

@see Eqs.~6! and~9!#, limits, as a matter of fact, the existenc
~rather than stability! region of the solitons. We have als
investigated the situation at other values ofl, obtaining quite
similar results. In particular, the stability region is smaller f
smaller values ofl.

Figure 4 strongly suggests thatcmax(v)→` as v→vup.
This feature can be readily understood, as well as the
that the upper existence boundary~19! for the solitons does
not depend onc. Indeed, recall that, in the casec50, the
upper edge of the upper gap~which is a genuine gap in tha
case!, v5vup, exactly corresponds tou50 according to Eq.
~17!. It is easy to check that, close to this edge, the width
the exact soliton solution~15!, ~16! diverges as (h2sinu)21

;(vup2v)21/2, and its amplitude vanishes asuhusinu;
Avup2v. With the diverging width, thex-derivative terms in
Eqs. ~3! and ~4! become negligible@on the contrary to Eqs
~1! and ~2!, where the small derivatives are necessary
balance the small nonlinear terms#. Moreover, in this case it
is straightforward to expand the stationary soliton solution
powers of the small parametercAvup2v; we do not display
the result as it is cumbersome. This explains why the up
edge of the upper gap does not depend onc, which is a
coefficient in front of the terms that vanish exactly at t
upper edge. This argument also supports the above con
ture thatcmax(v)→` asv→vup.

A question may arise as to whether one may identify
exact~in a numerical sense! lower bordervmin(c) of the re-
gion where the solitons exist forcÞ0. Asc approaches zero
vmin(c) approaches the lower edge of the true upper g
existing atc50, see Fig. 1. However, for larger values ofc,
we did not aim to identify the lower boundary of the exi
tence region of the solitons with a high accuracy beca
convergence of the numerical procedure deteriorates as
approaches the border. In any case, this lower border
within that part of the soliton existence region where they
definitely unstable, therefore, it is not a feature of significa
physical interest.

V. AN ESTIMATE FOR THE RATE OF RADIATIVE
DECAY FOR THE SOLITONS OVERLAPPING

WITH THE CONTINUOUS SPECTRUM

Due to the finite accuracy of the numerical methods, th
still remains a fundamental question as to whether a cont
ous family of the solitons considered here exists in a rigor
sense, or the solitons would eventually decay into radiat
because of the resonance with the branch of the continu
spectrum with which they overlap, if the simulations cou
be run indefinitely long. If the latter is true, it is possible

i-
e
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7-4
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estimate the corresponding soliton’s decay rate. Followin
perturbative formalism for the description of the ener
emission by solitons coupled to the continuous spectr
@12#, the energyP emitted by the soliton per unit of time
~i.e., the emission power! is proportional to a squared inte
gral of the following type:

P;U E
2`

1`

eikxusol~x,t !U2

, ~20!

wherek is the wave number of a linear wave coupled to t
frequencyv of the soliton by the dispersion relation~5!, and
usol(x,t) is the soliton’s wave field. For an estimate~which is
definitely valid in the case of smallc, when the perturbation
theory is most relevant!, we may use the asymptotic approx
mation~12!, i.e.,k'6v/c, and approximate the soliton by
simple wave form,u(x,t);sech(x/W)exp(2ivt), W being
its characteristic half width. Substituting these approxim
tions into Eq.~20!, we obtain an exponential factor that d
termines the order of magnitude of the emission rate

P;exp~2pWv/c!, ~21!

~recall that the present solitons exist only withv.0). Then,
for example in the case shown in Fig. 3, substitution of v
ues of the parameters for the apparently stable final sol
into Eq. ~21! yields P;10261, i.e., in this case the soliton
may be regarded as a genuine one in any sense. Evenc
*1, the exponential factor remains extremely small. For
stance, in a typical case of a stable soliton withc51.8 and
v51.6, we findW;10, andP; exp(228)'10212.

In this connection, we stress that these estimates, conc
ing theexistenceof the solitons overlapping into the continu
ous spectrum, pertain equally to both stable and unst
solitons. The distinction between them~similar to the distinc-
tion between stable and unstable generalized Thirring s
tons@9,10#! is a dynamical feature, absolutely different fro
their existence/nonexistence property.

Lastly, we have also simulated interactions between
identical stable solitons with a phase differenceDw. In gen-
eral, the results are similar to those briefly described ab
for the casec50 ~see Fig. 2, for instance!. In particular,
stablemovingsolitons of the present type exist too. For bo
.

B
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casesDw50 andDw5p, we observed that the interactio
could additionally destabilize the solitons that were ve
close to the stability border.

VI. CONCLUSION

In this work, we have introduced a model of a dual-co
optical system where one core has the Kerr nonlinearity
the other one is linear, being equipped with a Bragg grati
The linear spectrum of the system has a central gap, whic
always a genuine one, and lower and upper gaps, each o
lapping with one branch of the continuous spectrum, exc
for the case when the group velocityc in the linear core is
zero. In the latter case, all the three gaps are genuine o
and a family of soliton solutions is found in an exact form
These solutions completely fill all the three gaps, but only
an upper section of the upper one they are found to be
namically stable. AtcÞ0, the model gives rise to wha
seems to be a new type of solitons. In this case, no solit
are found in the genuine central gap and in the former low
one. On the other hand, in the upper gap, which overl
with the continuous spectrum, unusual solitons were fou
They exist as a continuous family inside the gap,despiteits
overlapping with one branch of the continuous spectrum.
upper section of the upper gap, in which these solitons
stable, has been identified. It was also found that the st
solitons may be set into motion as a result of their inter
tion, the moving solitons remaining stable.

Note added in proof.Very recently, A.R. Champneys ha
numerically investigated the characteristics of the station
solutions by reducing the model to a set of ODEs and solv
them using a very accurate numerical scheme based on
AUTO software package. As a result, it has been found th
strictly speaking, there is a dense but discrete system of
bedded solitons in the region where our numerical res
indicated the existence of the continuous family. However
one is approaching the upper border of the region~see Fig.
4!, the difference between truly localized embedded solito
and delocalized ones~with tiny spatially oscillating tails at-
tached to them!, existing in the gaps between the embedd
solitons, becomes so small that no distinction between th
is visible, and the soliton family is indeed getting continuo
in any practical sense.
n.
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